bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-8.409056,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|None_DoOnce|None|||cCube2||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.25\ //\ Einheitliche\ Skalierung\ für\ alle\ Würfel\n\n//\ Gitter-Parameter\ngridSize\ =\ 10\ //\ Annahme:\ 10x10\ Gitter\ für\ 100\ Würfel\ninitialSpacing\ =\ 0\.35\ //\ Initialer\ Abstand\ zwischen\ den\ Würfeln\ im\ Gitter\n\n//\ Expansions-Parameter\nexpansionAmplitude\ =\ 2\ //\ Maximale\ Ausdehnung\ vom\ initialen\ Abstand\nexpansionSpeed\ =\ 1\ \ \ \ \ //\ Geschwindigkeit\ der\ Expansion/Kontraktion\ngridYPos\ =\ 0\.5\ \ \ \ \ \ \ \ \ //\ Feste\ Y-Position\ des\ Gitters\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Initiale\ Skalierung\ aller\ Würfel\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\n//\ Hauptanimationsschleife\ für\ das\ expandierende/kontrahierende\ Gitter\nwhile\ time\ <\ 20\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ //\ Berechnung\ des\ Expansionsfaktors\n\ \ \ \ //\ sin\(\)\ \+\ 1\ normalisiert\ den\ Bereich\ auf\ 0\ bis\ 2,\ /2\ auf\ 0\ bis\ 1\n\ \ \ \ //\ Dies\ wird\ dann\ mit\ der\ Amplitude\ multipliziert\ und\ zum\ initialen\ Abstand\ addiert\.\n\ \ \ \ currentExpansionFactor\ =\ initialSpacing\ \+\ expansionAmplitude\ \*\ \(sin\(currentTime\ \*\ expansionSpeed\)\ \+\ 1\)\ /\ 2\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ der\ Reihe\ und\ Spalte\ im\ Gitter\n\ \ \ \ \ \ \ \ row\ =\ floor\(i\ /\ gridSize\)\ //\ Ganzzahlige\ Division\ für\ die\ Reihe\n\ \ \ \ \ \ \ \ col\ =\ i\ %\ gridSize\ \ \ \ \ \ \ \ //\ Modulo\ für\ die\ Spalte\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ der\ X-\ und\ Z-Positionen\ basierend\ auf\ Gitter\ und\ Expansion\n\ \ \ \ \ \ \ \ //\ Zentrierung\ des\ Gitters\ um\ 0,0\n\ \ \ \ \ \ \ \ posX\ =\ \(col\ -\ \(gridSize\ -\ 1\)\ /\ 2\)\ \*\ currentExpansionFactor\n\ \ \ \ \ \ \ \ posZ\ =\ \(row\ -\ \(gridSize\ -\ 1\)\ /\ 2\)\ \*\ currentExpansionFactor\n\n\ \ \ \ \ \ \ \ //\ Würfel\ an\ die\ berechnete\ Position\ verschieben\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ posX,\ gridYPos,\ posZ\n\ \ \ \ end\ for\n\n\ \ \ \ //\ yield\ //\ Dieses\ Statement\ bleibt\ entfernt,\ wie\ gewünscht\nend\ while\n|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-6.287906,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|None_DoOnce|None|||cCube2||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.05\ //\ Einheitliche\ Skalierung\ für\ alle\ Würfel\n\n//\ Fall-Parameter\nstartHeight\ =\ 20\ \ \ \ \ \ \ //\ Start-Y-Position,\ von\ der\ die\ Würfel\ fallen\ngroundLevel\ =\ 0\ \ \ \ \ \ \ \ //\ Y-Position,\ bei\ der\ die\ Würfel\ zurückgesetzt\ werden\nfallSpeed\ =\ 10\ \ \ \ \ \ \ \ \ \ //\ Grundgeschwindigkeit\ des\ Falls\nrandomness\ =\ 2\.5\ \ \ \ \ \ \ //\ Zufälligkeit\ der\ Fallgeschwindigkeit\n\n//\ Initialisierung\ der\ Würfelnamen-Liste\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Initiale\ Skalierung\ aller\ Würfel\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale\*2,\ cubeScale,\ cubeScale\*2\nend\ for\n\n//\ Hauptanimationsschleife\ für\ die\ Fall-Bewegung\n//\ Diese\ Schleife\ läuft\ unendlich\ für\ einen\ kontinuierlichen\ Effekt\.\nwhile\ time\ <\ 20\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ //\ Jede\ Kugel\ erhält\ eine\ leicht\ zufällige\ Fallgeschwindigkeit\n\ \ \ \ \ \ \ \ effectiveFallSpeed\ =\ fallSpeed\ \+\ rnd\(null\)\ \*\ randomness\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ der\ neuen\ Y-Position\n\ \ \ \ \ \ \ \ //\ Die\ Würfel\ fallen\ kontinuierlich\ nach\ unten\n\ \ \ \ \ \ \ \ newPosY\ =\ startHeight\ -\ \(currentTime\ \*\ effectiveFallSpeed\)\ %\ \(startHeight\ -\ groundLevel\)\n\n\ \ \ \ \ \ \ \ //\ Würfel\ an\ die\ berechnete\ Position\ verschieben\n\ \ \ \ \ \ \ \ //\ Die\ X-\ und\ Z-Positionen\ bleiben\ statisch\ bei\ 0\ für\ eine\ vertikale\ Säule\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ 0,\ newPosY,\ 0\n\ \ \ \ end\ for\n\n\ \ \ \ //\ yield\ //\ Dieses\ Statement\ bleibt\ entfernt,\ wie\ gewünscht\nend\ while\n|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-4.228586,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|None_DoOnce|None|||cCube2||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.15\ //\ Einheitliche\ Skalierung\ für\ alle\ Würfel\n\n//\ Kreis-Parameter\ncircleRadius\ =\ 2\ \ \ \ \ \ \ \ \ //\ Radius\ des\ Kreises,\ in\ dem\ die\ Würfel\ angeordnet\ sind\nrotationSpeed\ =\ 0\.5\ \ \ \ \ \ //\ Geschwindigkeit,\ mit\ der\ sich\ der\ Kreis\ dreht\ \(Radiant\ pro\ Sekunde\)\ncircleYPos\ =\ 2\ \ \ \ \ \ \ \ \ \ \ //\ Y-Position\ des\ Kreises\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Initiale\ Skalierung\ aller\ Würfel\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\n//\ Hauptanimationsschleife\ für\ die\ Kreis-Rotation\nwhile\ time\ <\ 10\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ //\ Berechnung\ des\ aktuellen\ Rotationswinkels\ für\ den\ gesamten\ Kreis\n\ \ \ \ //\ Die\ Rotation\ erfolgt\ kontinuierlich\ um\ die\ Y-Achse\n\ \ \ \ currentRotationAngle\ =\ currentTime\ \*\ rotationSpeed\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ des\ Winkels\ für\ den\ aktuellen\ Würfel\ im\ Kreis\n\ \ \ \ \ \ \ \ //\ Die\ Würfel\ werden\ gleichmässig\ über\ den\ Kreis\ verteilt\ \(1\ \*\ pi\ =\ 360\ Grad\)\n\ \ \ \ \ \ \ \ angleOffset\ =\ \(i\ /\ numCubes\)\ \*\ 2\ \*\ pi\n\n\ \ \ \ \ \ \ \ //\ Anwendung\ der\ Gesamt-Rotation\ auf\ den\ individuellen\ Winkel\n\ \ \ \ \ \ \ \ effectiveAngle\ =\ angleOffset\ \+\ currentRotationAngle\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ der\ X-\ und\ Z-Positionen\ auf\ dem\ Kreis\n\ \ \ \ \ \ \ \ //\ cos\(Winkel\)\ für\ X\ und\ sin\(Winkel\)\ für\ Z,\ multipliziert\ mit\ dem\ Radius\n\ \ \ \ \ \ \ \ posX\ =\ circleRadius\ \*\ cos\(effectiveAngle\)\n\ \ \ \ \ \ \ \ posZ\ =\ circleRadius\ \*\ sin\(effectiveAngle\)\n\n\ \ \ \ \ \ \ \ //\ Würfel\ an\ die\ berechnete\ Position\ verschieben\n\ \ \ \ \ \ \ \ //\ Die\ Y-Position\ bleibt\ konstant\ auf\ circleYPos\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ posX,\ circleYPos,\ posZ\n\ \ \ \ end\ for\n\n\ \ \ \ //\ yield\ //\ Dieses\ Statement\ bleibt\ entfernt,\ wie\ gewünscht\nend\ while\n|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.243415,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|OnClick|None|||cCube2||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.25\ //\ Einheitliche\ Skalierung\ für\ alle\ Würfel\n\n//\ Bereich\ für\ die\ zufällige\ Bewegung\nminX\ =\ -5\nmaxX\ =\ 5\nminY\ =\ 0\nmaxY\ =\ 5\nminZ\ =\ -5\nmaxZ\ =\ 5\n\n//\ Geschwindigkeit\ der\ zufälligen\ Bewegung\ \(wie\ schnell\ sich\ die\ Positionen\ ändern\)\nmoveSpeed\ =\ 0\.1\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Initiale\ Skalierung\ aller\ Würfel\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\n//\ Hauptanimationsschleife\ für\ die\ Schwärm-Bewegung\n//\ Diese\ Schleife\ läuft\ unendlich\ für\ einen\ kontinuierlichen\ Effekt\.\nwhile\ time\ <\ 20\n\ \ \ \ //\ currentTime\ wird\ hier\ nicht\ direkt\ für\ die\ Position\ verwendet,\n\ \ \ \ //\ sondern\ die\ Bewegung\ ist\ eher\ sprunghaft\ zufällig\.\n\ \ \ \ //\ Man\ könnte\ currentTime\ auch\ nutzen,\ um\ eine\ sanftere\ Bewegung\ zu\ interpolieren\.\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ //\ Generiere\ zufällige\ neue\ Positionen\ innerhalb\ des\ definierten\ Bereichs\n\ \ \ \ \ \ \ \ //\ rnd\(null\)\ gibt\ eine\ Zufallszahl\ zwischen\ 0\ \(inklusive\)\ und\ 1\ \(exklusive\)\ zurück\.\n\ \ \ \ \ \ \ \ //\ Die\ Formel:\ min\ \+\ rnd\(\)\ \*\ \(max\ -\ min\)\ skaliert\ rnd\(\)\ auf\ den\ gewünschten\ Bereich\.\n\ \ \ \ \ \ \ \ newPosX\ =\ minX\ \+\ rnd\(null\)\ \*\ \(maxX\ -\ minX\)\n\ \ \ \ \ \ \ \ newPosY\ =\ minY\ \+\ rnd\(null\)\ \*\ \(maxY\ -\ minY\)\n\ \ \ \ \ \ \ \ newPosZ\ =\ minZ\ \+\ rnd\(null\)\ \*\ \(maxZ\ -\ minZ\)\n\n\ \ \ \ \ \ \ \ //\ Bewege\ den\ Würfel\ zu\ der\ neuen\ zufälligen\ Position\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ newPosX,\ newPosY,\ newPosZ\n\ \ \ \ end\ for\n\n\ \ \ \ //yield\nend\ while\n|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.3500419,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|None_DoOnce|None|||cCube2||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.25\ //\ Einheitliche\ Skalierung\ für\ alle\ Würfel\n\n//\ Helix-Parameter\nhelixRadius\ =\ 2\ \ \ \ \ \ \ \ \ \ //\ Radius\ der\ Helix\nhelixHeightIncrement\ =\ 0\.025\ //\ Vertikaler\ Abstand\ zwischen\ den\ Würfeln\ in\ der\ Helix\nhelixRotationSpeed\ =\ 1\ \ \ //\ Geschwindigkeit\ der\ Helix-Rotation\ um\ die\ Y-Achse\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Initiale\ Skalierung\ aller\ Würfel\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\nstartTime\ =\ time\ //\ Speichert\ die\ Startzeit\ der\ Animation\n\n//\ Hauptanimationsschleife\ für\ die\ Helix-Bewegung\n//\ Die\ Schleife\ läuft,\ solange\ die\ verstrichene\ Zeit\ weniger\ als\ 20\ Sekunden\ beträgt\.\nwhile\ \(time\ -\ startTime\)\ <\ 20\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ //\ Berechnung\ der\ aktuellen\ Rotation\ der\ gesamten\ Helix\n\ \ \ \ currentHelixRotation\ =\ currentTime\ \*\ helixRotationSpeed\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ des\ Winkels\ für\ den\ aktuellen\ Würfel\ in\ der\ Helix\n\ \ \ \ \ \ \ \ //\ 2\ \*\ pi\ für\ einen\ vollen\ Kreis\n\ \ \ \ \ \ \ \ angle\ =\ \(i\ /\ numCubes\)\ \*\ 2\ \*\ pi\ \+\ currentHelixRotation\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ der\ X-,\ Y-\ und\ Z-Positionen\ für\ die\ Helix\n\ \ \ \ \ \ \ \ //\ X\ und\ Z\ basieren\ auf\ Sinus\ und\ Kosinus\ für\ die\ Kreisbewegung\n\ \ \ \ \ \ \ \ //\ Y\ inkrementiert\ linear\ für\ die\ spiralförmige\ Bewegung\n\ \ \ \ \ \ \ \ posX\ =\ helixRadius\ \*\ cos\(angle\)\n\ \ \ \ \ \ \ \ posY\ =\ i\ \*\ helixHeightIncrement\n\ \ \ \ \ \ \ \ posZ\ =\ helixRadius\ \*\ sin\(angle\)\n\n\ \ \ \ \ \ \ \ //\ Würfel\ an\ die\ berechnete\ Position\ verschieben\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ posX,\ posY,\ posZ\n\ \ \ \ end\ for\n\n\ \ \ \ //\ yield\ //\ Dieses\ Statement\ wurde\ entfernt\nend\ while\n|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~3.371113,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|None|None|||cCube2||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.25\ //\ Einheitliche\ Skalierung\ für\ alle\ Würfel\n\n//\ Helix-Parameter\nhelixRadius\ =\ 2\ \ \ \ \ \ \ \ \ \ //\ Radius\ der\ Helix\nhelixHeightIncrement\ =\ 0\.1\ //\ Vertikaler\ Abstand\ zwischen\ den\ Würfeln\ in\ der\ Helix\nhelixRotationSpeed\ =\ 1\ \ \ //\ Geschwindigkeit\ der\ Helix-Rotation\ um\ die\ Y-Achse\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Initiale\ Skalierung\ aller\ Würfel\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\n//\ Hauptanimationsschleife\ für\ die\ Helix-Bewegung\nwhile\ true\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ //\ Berechnung\ der\ aktuellen\ Rotation\ der\ gesamten\ Helix\n\ \ \ \ currentHelixRotation\ =\ currentTime\ \*\ helixRotationSpeed\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ des\ Winkels\ für\ den\ aktuellen\ Würfel\ in\ der\ Helix\n\ \ \ \ \ \ \ \ //\ 2\ \*\ pi\ für\ einen\ vollen\ Kreis\n\ \ \ \ \ \ \ \ angle\ =\ \(i\ /\ numCubes\)\ \*\ 2\ \*\ pi\ \+\ currentHelixRotation\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ der\ X-,\ Y-\ und\ Z-Positionen\ für\ die\ Helix\n\ \ \ \ \ \ \ \ //\ X\ und\ Z\ basieren\ auf\ Sinus\ und\ Kosinus\ für\ die\ Kreisbewegung\n\ \ \ \ \ \ \ \ //\ Y\ inkrementiert\ linear\ für\ die\ spiralförmige\ Bewegung\n\ \ \ \ \ \ \ \ posX\ =\ helixRadius\ \*\ cos\(angle\)\n\ \ \ \ \ \ \ \ posY\ =\ i\ \*\ helixHeightIncrement\n\ \ \ \ \ \ \ \ posZ\ =\ helixRadius\ \*\ sin\(angle\)\n\n\ \ \ \ \ \ \ \ //\ Würfel\ an\ die\ berechnete\ Position\ verschieben\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ posX,\ posY,\ posZ\n\ \ \ \ end\ for\n\n\ \ //\ \ yield\nend\ while\n|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-12.37123,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|None_DoOnce|None|||cCube2||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.25\ //\ Uniform\ scaling\ for\ all\ cubes\n\n//\ Grid\ Parameters\ \(Start/End\ Position\)\ngridSize\ =\ 10\ //\ 10x10\ Grid\ninitialSpacing\ =\ 0\.5\ //\ Spacing\ between\ cubes\ in\ the\ grid\ngridYPos\ =\ 0\.5\ //\ Fixed\ Y-position\ of\ the\ grid\n\n//\ Sphere\ Parameters\ \(Target\ Formation\)\nsphereRadius\ =\ 4\ //\ Radius\ of\ the\ sphere\ formation\nsphereYPos\ =\ 2\ \ \ //\ Y-position\ of\ the\ sphere\ formation\n\n//\ Animation\ Parameters\nanimationDuration\ =\ 5\ //\ Duration\ of\ an\ animation\ phase\ \(Grid\ to\ Sphere\ or\ Sphere\ to\ Grid\)\nanimationSpeed\ =\ 1\ \ \ \ //\ Overall\ animation\ speed\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Initial\ scaling\ of\ all\ cubes\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\n//\ Main\ animation\ loop\ for\ the\ sphere\ formation\nwhile\ true\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ //\ Phase\ Calculation:\ Switch\ between\ Grid\ ->\ Sphere\ and\ Sphere\ ->\ Grid\n\ \ \ \ //\ Modulo\ 2\ \*\ animationDuration\ to\ divide\ time\ into\ phases\n\ \ \ \ phaseTime\ =\ currentTime\ \*\ animationSpeed\ %\ \(2\ \*\ animationDuration\)\n\n\ \ \ \ //\ Interpolation\ factor\ \(from\ 0\ to\ 1\ and\ back\)\n\ \ \ \ //\ If\ phaseTime\ <\ animationDuration:\ Grid\ to\ Sphere\ \(factor\ from\ 0\ to\ 1\)\n\ \ \ \ //\ If\ phaseTime\ >=\ animationDuration:\ Sphere\ to\ Grid\ \(factor\ from\ 1\ to\ 0\)\n\ \ \ \ interpFactor\ =\ 0\n\ \ \ \ if\ phaseTime\ <\ animationDuration\ then\n\ \ \ \ \ \ \ \ interpFactor\ =\ phaseTime\ /\ animationDuration\n\ \ \ \ else\n\ \ \ \ \ \ \ \ interpFactor\ =\ 1\ -\ \(\(phaseTime\ -\ animationDuration\)\ /\ animationDuration\)\n\ \ \ \ end\ if\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ //\ 1\.\ Grid\ Start\ Position\ \(independent\ of\ expansion\)\n\ \ \ \ \ \ \ \ row\ =\ floor\(i\ /\ gridSize\)\n\ \ \ \ \ \ \ \ col\ =\ i\ %\ gridSize\n\ \ \ \ \ \ \ \ gridPosX\ =\ \(col\ -\ \(gridSize\ -\ 1\)\ /\ 2\)\ \*\ initialSpacing\n\ \ \ \ \ \ \ \ gridPosZ\ =\ \(row\ -\ \(gridSize\ -\ 1\)\ /\ 2\)\ \*\ initialSpacing\n\n\ \ \ \ \ \ \ \ //\ 2\.\ Sphere\ Target\ Position\n\ \ \ \ \ \ \ \ //\ Even\ distribution\ of\ cubes\ on\ a\ sphere\ surface\n\ \ \ \ \ \ \ \ //\ \(Approximation:\ Fibonacci\ grid\ or\ spiral\ arrangement\ on\ sphere\)\n\ \ \ \ \ \ \ \ //\ Here,\ a\ simple\ spiral\ arrangement\ for\ 100\ points\ on\ a\ sphere\n\ \ \ \ \ \ \ \ goldenAngle\ =\ pi\ \*\ \(3\ -\ sqrt\(5\)\)\ //\ Golden\ angle\ in\ radians\n\ \ \ \ \ \ \ \ y\ =\ 1\ -\ \(i\ /\ \(numCubes\ -\ 1\)\)\ \*\ 2\ //\ Y\ from\ 1\ to\ -1\n\ \ \ \ \ \ \ \ radiusAtY\ =\ sqrt\(1\ -\ y\*y\)\ \*\ sphereRadius\n\ \ \ \ \ \ \ \ angle\ =\ goldenAngle\ \*\ i\n\n\ \ \ \ \ \ \ \ spherePosX\ =\ radiusAtY\ \*\ cos\(angle\)\n\ \ \ \ \ \ \ \ spherePosY\ =\ y\ \*\ sphereRadius\n\ \ \ \ \ \ \ \ spherePosZ\ =\ radiusAtY\ \*\ sin\(angle\)\n\n\ \ \ \ \ \ \ \ //\ Interpolation\ between\ grid\ and\ sphere\ position\n\ \ \ \ \ \ \ \ //\ lerp\ =\ linear\ interpolation\n\ \ \ \ \ \ \ \ finalPosX\ =\ gridPosX\ \*\ \(1\ -\ interpFactor\)\ \+\ spherePosX\ \*\ interpFactor\n\ \ \ \ \ \ \ \ finalPosY\ =\ gridYPos\ \*\ \(1\ -\ interpFactor\)\ \+\ spherePosY\ \*\ interpFactor\n\ \ \ \ \ \ \ \ finalPosZ\ =\ gridPosZ\ \*\ \(1\ -\ interpFactor\)\ \+\ spherePosZ\ \*\ interpFactor\n\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ finalPosX,\ finalPosY,\ finalPosZ\n\ \ \ \ end\ for\n\n\ \ \ \ //\ yield\ //\ This\ statement\ remains\ removed,\ as\ requested\nend\ while|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~8.631491,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|None|None|||cCube1||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.25\ncubeSpacing\ =\ 0\.01\n\nwaveAmplitude\ =\ 1\nwaveFrequency\ =\ 2\nwaveSpeed\ =\ 1\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\nwhile\ true\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ basePosX\ =\ i\ \*\ \(cubeScale\ \+\ cubeSpacing\)\n\n\ \ \ \ \ \ \ \ waveYOffset\ =\ waveAmplitude\ \*\ sin\(basePosX\ \*\ waveFrequency\ \+\ currentTime\ \*\ waveSpeed\)\n\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ basePosX,\ waveYOffset,\ 0\n\ \ \ \ end\ for\n\n\ \ \ \ //yield\nend\ while\nnumCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.2\ //\ Basis-Skalierung\ für\ X\ und\ Z\ncubeSpacing\ =\ 0\.1\n\nwaveAmplitude\ =\ 0\.5\ //\ Amplitude\ der\ Positions-Welle\nwaveFrequency\ =\ 5\nwaveSpeed\ =\ 2\n\nwaveScaleAmplitude\ =\ 0\.3\ //\ Amplitude\ der\ Skalierungs-Welle\ \(für\ Y-Achse\)\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Die\ initiale\ Skalierung\ bleibt\ erhalten,\ da\ die\ dynamische\ Skalierung\ in\ der\ Schleife\ erfolgt\.\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\nwhile\ true\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ basePosX\ =\ i\ \*\ \(cubeScale\ \+\ cubeSpacing\)\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ des\ Y-Offsets\ für\ die\ Positions-Welle\n\ \ \ \ \ \ \ \ waveYOffset\ =\ waveAmplitude\ \*\ sin\(basePosX\ \*\ waveFrequency\ \+\ currentTime\ \*\ waveSpeed\)\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ der\ dynamischen\ Y-Skalierung\n\ \ \ \ \ \ \ \ //\ Die\ Sinusfunktion\ liefert\ Werte\ zwischen\ -1\ und\ 1\.\n\ \ \ \ \ \ \ \ //\ Durch\ \(sin\(\.\.\.\)\ \+\ 1\)\ /\ 2\ wird\ der\ Bereich\ auf\ 0\ bis\ 1\ normalisiert\.\n\ \ \ \ \ \ \ \ //\ Dies\ wird\ dann\ mit\ waveScaleAmplitude\ multipliziert\ und\ zur\ Basis-Skalierung\ addiert\.\n\ \ \ \ \ \ \ \ dynamicScaleY\ =\ cubeScale\ \+\ waveScaleAmplitude\ \*\ \(sin\(basePosX\ \*\ waveFrequency\ \+\ currentTime\ \*\ waveSpeed\)\ \+\ 1\)\ /\ 2\n\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ basePosX,\ waveYOffset,\ 0\n\ \ \ \ \ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ dynamicScaleY,\ cubeScale\ //\ Dynamische\ Skalierung\ anwenden\n\ \ \ \ end\ for\n\n\ \ \ \ yield\nend\ while\n|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~5.69705,0.5,-9.293318,0,0,0,1,1,1~~smart|True|None|None|None|||cCube2||||numCubes\ =\ 100\ncubeBaseName\ =\ "Cube"\ncubeScale\ =\ 0\.2\ //\ Basis-Skalierung\ für\ X\ und\ Z\ncubeSpacing\ =\ 0\.1\n\nwaveAmplitude\ =\ 0\.5\ //\ Amplitude\ der\ Positions-Welle\nwaveFrequency\ =\ 5\nwaveSpeed\ =\ 2\n\nwaveScaleAmplitude\ =\ 0\.3\ //\ Amplitude\ der\ Skalierungs-Welle\ \(für\ Y-Achse\)\n\ncubeNames\ =\ \[]\nfor\ i\ in\ range\(1,\ numCubes\)\n\ \ \ \ cubeNames\.push\(cubeBaseName\ \+\ i\)\nend\ for\n\n//\ Die\ initiale\ Skalierung\ bleibt\ erhalten,\ da\ die\ dynamische\ Skalierung\ in\ der\ Schleife\ erfolgt\.\nfor\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ cubeScale,\ cubeScale\nend\ for\n\nwhile\ true\n\ \ \ \ currentTime\ =\ time\n\n\ \ \ \ for\ i\ in\ range\(0,\ numCubes\ -\ 1\)\n\ \ \ \ \ \ \ \ currentCubeName\ =\ cubeNames\[i]\n\n\ \ \ \ \ \ \ \ basePosX\ =\ i\ \*\ \(cubeScale\ \+\ cubeSpacing\)\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ des\ Y-Offsets\ für\ die\ Positions-Welle\n\ \ \ \ \ \ \ \ waveYOffset\ =\ waveAmplitude\ \*\ sin\(basePosX\ \*\ waveFrequency\ \+\ currentTime\ \*\ waveSpeed\)\n\n\ \ \ \ \ \ \ \ //\ Berechnung\ der\ dynamischen\ Y-Skalierung\n\ \ \ \ \ \ \ \ //\ Die\ Sinusfunktion\ liefert\ Werte\ zwischen\ -1\ und\ 1\.\n\ \ \ \ \ \ \ \ //\ Durch\ \(sin\(\.\.\.\)\ \+\ 1\)\ /\ 2\ wird\ der\ Bereich\ auf\ 0\ bis\ 1\ normalisiert\.\n\ \ \ \ \ \ \ \ //\ Dies\ wird\ dann\ mit\ waveScaleAmplitude\ multipliziert\ und\ zur\ Basis-Skalierung\ addiert\.\n\ \ \ \ \ \ \ \ dynamicScaleY\ =\ cubeScale\ \+\ waveScaleAmplitude\ \*\ \(sin\(basePosX\ \*\ waveFrequency\ \+\ currentTime\ \*\ waveSpeed\)\ \+\ 1\)\ /\ 2\n\n\ \ \ \ \ \ \ \ moveObject\ currentCubeName,\ basePosX,\ waveYOffset,\ 0\n\ \ \ \ \ \ \ \ scaleObject\ currentCubeName,\ cubeScale,\ dynamicScaleY,\ cubeScale\ //\ Dynamische\ Skalierung\ anwenden\n\ \ \ \ end\ for\n\n\ \ //\ \ yield\nend\ while\n|;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.662155,0.7589012,-2.038714,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube2|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~2.24235,0.4847,2.24235,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube100|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.74157,0.4849747,2.243467,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube99|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.249384,0.4852495,2.243549,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube98|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.7451714,0.4855242,2.238282,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube97|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.2479236,0.485799,2.247564,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube96|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.2442277,0.4860737,2.238996,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube95|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.7538734,0.4863485,2.241422,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube94|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.241335,0.4866232,2.247746,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube93|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.743635,0.486898,2.234948,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube92|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.247946,0.4871727,2.247811,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube91|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~2.250542,0.4874475,1.743791,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube90|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.737568,0.4877222,1.738478,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube89|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.246805,0.487997,1.752864,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube88|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.7528065,0.4882717,1.736587,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube87|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.2398739,0.4885465,1.745995,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube86|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.2407601,0.4888212,1.749022,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube85|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.7503532,0.489096,1.734468,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube84|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.250188,0.4893707,1.753298,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube83|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.734314,0.4896455,1.740142,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube82|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.252375,0.4899202,1.740278,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube81|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~2.247289,0.4901949,1.25549,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube80|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.747041,0.4904697,1.23504,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube79|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.23615,0.4907444,1.251726,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube78|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.7587413,0.4910192,1.247861,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube77|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.07513789,0.3061109,0.9478015,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube76|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.2566354,0.3122297,1.417284,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube75|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.4949011,0.3183485,0.9772099,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube74|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.42512,0.3244673,1.152718,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube73|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.41813,0.330586,1.34159,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube72|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.101051,0.3367049,0.8804983,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube71|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.9081,0.3428236,0.9124759,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube70|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.894591,0.3489424,0.6469781,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube69|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.917792,0.3550612,0.538819,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube68|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.764648,0.36118,0.9696878,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube67|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.3661333,0.3672988,0.4392428,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube66|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.504048,0.3734176,0.7898932,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube65|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.4249549,0.3795364,0.8070175,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube64|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.276968,0.3856552,0.4265729,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube63|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.708395,0.3917739,0.9734263,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube62|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.822103,0.3978927,0.5473052,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube61|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.78995,0.4040115,0.1644153,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube60|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.786708,0.4101303,0.476827,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube59|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.196719,0.4162491,-0.06544128,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube58|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.4617416,0.4223679,0.4223207,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube57|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.5316819,0.4284867,0.2464405,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube56|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.4427853,0.4346054,0.01623338,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube55|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.6821997,0.4407243,0.5329912,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube54|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.959283,0.446843,0.0007224033,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube53|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.917907,0.4529618,0.2685104,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube52|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.832721,0.4590806,0.4064629,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube51|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~2.016043,0.4651994,-0.5271842,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube50|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.464417,0.4713182,0.0301212,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube49|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.444417,0.477437,-0.3201923,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube48|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.4201958,0.4835558,-0.3604566,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube47|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.3447958,0.4896745,0.04829461,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube46|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.1264358,0.4957933,-0.5133029,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube45|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.9603449,0.5019121,-0.0939808,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube44|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.8666137,0.5080309,-0.1519393,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube43|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.77641,0.5141497,-0.4836089,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube42|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.132833,0.5202685,0.06137971,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube41|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~2.315402,0.5263873,-0.8721523,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube40|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.324154,0.532506,-0.7203963,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube39|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.352255,0.5386248,-0.4761508,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube38|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.6946315,0.5447437,-0.9846048,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube37|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.03441276,0.5508624,-0.4806293,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube36|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.05559599,0.5569812,-0.7169597,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube35|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.9189788,0.5631,-0.868058,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube34|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.107362,0.5692188,-0.4139832,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube33|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.465551,0.5753376,-0.9295092,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube32|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.348823,0.5814564,-0.6222516,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube31|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~2.323664,0.5875751,-1.027093,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube30|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.525154,0.5936939,-1.412068,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube29|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.051198,0.5998127,-0.906483,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube28|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.9352011,0.6059315,-1.267156,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube27|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.01965875,0.6120503,-1.235339,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube26|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.1020027,0.6181691,-0.9301105,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube25|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.6370621,0.6242879,-1.404933,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube24|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.362074,0.6304067,-1.011517,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube23|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.372061,0.6365255,-1.122328,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube22|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.235461,0.6426442,-1.342088,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube21|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~2.068611,0.648763,-1.37919,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube20|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.7831,0.6548818,-1.782294,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube19|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.9270921,0.6610006,-1.608051,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube18|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.8637109,0.6671194,-1.473792,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube17|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.2031581,0.6732382,-1.832884,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube16|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.352466,0.679357,-1.444817,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube15|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.493391,0.6854758,-1.66142,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube14|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.326406,0.6915945,-1.71662,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube13|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.560515,0.6977133,-1.435844,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube12|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.002261,0.7038321,-1.782824,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube11|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.918661,0.7099509,-2.013184,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube10|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.772566,0.7160697,-2.022996,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube9|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~1.083782,0.7221885,-2.217431,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube8|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.6556873,0.7283072,-1.940047,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube7|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~0.342996,0.7344261,-2.150828,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube6|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.3485238,0.7405449,-2.100406,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube5|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-0.6300302,0.7466636,-1.997223,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube4|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-1.147899,0.7527824,-2.164529,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube3|||||;bfaed1ac-f1f1-49dd-8bc3-431b3d1f1731~-2.07963,0.76502,-2.07963,0,0,0,0.25,0.25,0.25~~smart|True|None|None|None|||Cube1|||||;^0,0,0^0,180,0^0^^false,,^^0,3,0,56.21999,330,1.228439E-05^false||||^false||^unlocked|